Helpers#
The pyvista
module contains several functions to simplify the
creation and manipulation of meshes or interfacing with VTK datasets.
Wrap a VTK Dataset#
- helpers.wrap() pyvista.DataSet | pyvista.pyvista_ndarray | None [source]#
Wrap any given VTK data object to its appropriate PyVista data object.
Other formats that are supported include:
2D
numpy.ndarray
of XYZ vertices3D
numpy.ndarray
representing a volume. Values will be scalars.3D
trimesh.Trimesh
mesh.3D
meshio.Mesh
mesh.
Changed in version 0.38.0: If the passed object is already a wrapped PyVista object, then this is no-op and will return that object directly. In previous versions of PyVista, this would perform a shallow copy.
- Parameters:
- dataset
numpy.ndarray
|trimesh.Trimesh
|vtk.DataSet
Dataset to wrap.
- dataset
- Returns:
pyvista.DataSet
The PyVista wrapped dataset.
Examples
Wrap a numpy array representing a random point cloud.
>>> import numpy as np >>> import pyvista as pv >>> points = np.random.random((10, 3)) >>> cloud = pv.wrap(points) >>> cloud PolyData (...) N Cells: 10 N Points: 10 N Strips: 0 X Bounds: ... Y Bounds: ... Z Bounds: ... N Arrays: 0
Wrap a VTK object.
>>> import pyvista as pv >>> import vtk >>> points = vtk.vtkPoints() >>> p = [1.0, 2.0, 3.0] >>> vertices = vtk.vtkCellArray() >>> pid = points.InsertNextPoint(p) >>> _ = vertices.InsertNextCell(1) >>> _ = vertices.InsertCellPoint(pid) >>> point = vtk.vtkPolyData() >>> _ = point.SetPoints(points) >>> _ = point.SetVerts(vertices) >>> mesh = pv.wrap(point) >>> mesh PolyData (...) N Cells: 1 N Points: 1 N Strips: 0 X Bounds: 1.000e+00, 1.000e+00 Y Bounds: 2.000e+00, 2.000e+00 Z Bounds: 3.000e+00, 3.000e+00 N Arrays: 0
Wrap a Trimesh object.
>>> import trimesh >>> import pyvista as pv >>> points = [[0, 0, 0], [0, 0, 1], [0, 1, 0]] >>> faces = [[0, 1, 2]] >>> tmesh = trimesh.Trimesh(points, faces=faces, process=False) >>> mesh = pv.wrap(tmesh) >>> mesh PolyData (0x7fc55ff27ad0) N Cells: 1 N Points: 3 X Bounds: 0.000e+00, 0.000e+00 Y Bounds: 0.000e+00, 1.000e+00 Z Bounds: 0.000e+00, 1.000e+00 N Arrays: 0
Simplified Triangular Mesh Construction#
- points.make_tri_mesh(faces)[source]#
Construct a
pyvista.PolyData
mesh using points and faces arrays.Construct a mesh from an Nx3 array of points and an Mx3 array of triangle indices, resulting in a mesh with N vertices and M triangles. This function does not require the standard VTK “padding” column and simplifies mesh creation.
- Parameters:
- points
np.ndarray
Array of points with shape
(N, 3)
storing the vertices of the triangle mesh.- faces
np.ndarray
Array of indices with shape
(M, 3)
containing the triangle indices.
- points
- Returns:
pyvista.PolyData
PolyData instance containing the triangle mesh.
Examples
This example discretizes the unit square into a triangle mesh with nine vertices and eight faces.
>>> import numpy as np >>> import pyvista as pv >>> points = np.array( ... [ ... [0, 0, 0], ... [0.5, 0, 0], ... [1, 0, 0], ... [0, 0.5, 0], ... [0.5, 0.5, 0], ... [1, 0.5, 0], ... [0, 1, 0], ... [0.5, 1, 0], ... [1, 1, 0], ... ] ... ) >>> faces = np.array( ... [ ... [0, 1, 4], ... [4, 7, 6], ... [2, 5, 4], ... [4, 5, 8], ... [0, 4, 3], ... [3, 4, 6], ... [1, 2, 4], ... [4, 8, 7], ... ] ... ) >>> tri_mesh = pv.make_tri_mesh(points, faces) >>> tri_mesh.plot(show_edges=True, line_width=5)
Lines from Points#
- points.lines_from_points(close=False)[source]#
Make a connected line set given an array of points.
- Parameters:
- pointsarray_like[
float
] Points representing the vertices of the connected segments. For example, two line segments would be represented as
np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
.- closebool, default:
False
If
True
, close the line segments into a loop.
- pointsarray_like[
- Returns:
pyvista.PolyData
PolyData with lines and cells.
Examples
>>> import numpy as np >>> import pyvista as pv >>> points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> poly = pv.lines_from_points(points) >>> poly.plot(line_width=5)
Line Segments from Points#
- points.line_segments_from_points()[source]#
Generate non-connected line segments from points.
Assumes points are ordered as line segments and an even number of points.
- Parameters:
- pointsarray_like[
float
] Points representing line segments. An even number must be given as every two vertices represent a single line segment. For example, two line segments would be represented as
np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0]])
.
- pointsarray_like[
- Returns:
pyvista.PolyData
PolyData with lines and cells.
Examples
This example plots two line segments at right angles to each other.
>>> import pyvista as pv >>> import numpy as np >>> points = np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> lines = pv.line_segments_from_points(points) >>> lines.plot()
Convert to and from VTK Data Types#
- arrays.convert_array(name=None, deep=False, array_type=None)[source]#
Convert a NumPy array to a vtkDataArray or vice versa.
- Parameters:
- arr
np.ndarray
|vtkDataArray
A numpy array or vtkDataArry to convert.
- name
str
,optional
The name of the data array for VTK.
- deepbool, default:
False
If input is numpy array then deep copy values.
- array_type
int
,optional
VTK array type ID as specified in specified in
vtkType.h
.
- arr
- Returns:
vtkDataArray
ornumpy.ndarray
The converted array. If input is a
numpy.ndarray
then returnsvtkDataArray
or is input isvtkDataArray
then returns NumPyndarray
.
Fit Plane to Points#
- points.fit_plane_to_points(return_meta=False)[source]#
Fit a plane to a set of points using the SVD algorithm.
The plane is automatically sized and oriented to fit the extents of the points.
- Parameters:
- pointsarray_like[
float
] Size
[N x 3]
sequence of points to fit a plane through.- return_metabool, default:
False
If
True
, also returns the center and normal of the generated plane.
- pointsarray_like[
- Returns:
pyvista.PolyData
Plane mesh.
numpy.ndarray
Plane center if
return_meta=True
.numpy.ndarray
Plane normal if
return_meta=True
.
Examples
Fit a plane to a random point cloud.
>>> import pyvista as pv >>> import numpy as np >>> >>> # Create point cloud >>> cloud = np.random.random((10, 3)) >>> cloud[:, 2] *= 0.1 >>> >>> # Fit plane >>> plane, center, normal = pv.fit_plane_to_points( ... cloud, return_meta=True ... ) >>> >>> # Plot the fitted plane >>> pl = pv.Plotter() >>> _ = pl.add_mesh( ... plane, color='lightblue', style='wireframe', line_width=4 ... ) >>> _ = pl.add_points( ... cloud, ... render_points_as_spheres=True, ... color='r', ... point_size=30, ... ) >>> pl.show()
Fit a plane to a mesh.
>>> import pyvista as pv >>> from pyvista import examples >>> >>> # Create mesh >>> mesh = examples.download_shark() >>> >>> # Fit plane >>> plane = pv.fit_plane_to_points(mesh.points) >>> >>> # Plot the fitted plane >>> pl = pv.Plotter() >>> _ = pl.add_mesh( ... plane, show_edges=True, color='lightblue', opacity=0.25 ... ) >>> _ = pl.add_mesh(mesh, color='gray') >>> pl.camera_position = [ ... (-117, 76, 235), ... (1.69, -1.38, 0), ... (0.189, 0.957, -0.22), ... ] >>> pl.show()