Note
Go to the end to download the full example code
Plotting with VTK Algorithms#
Pass a vtkAlgorithm
to the Plotter
for dynamic visualizations.
Note
By “dynamic visualization” we mean that as the input data/source changes, so will the visualization in real time.
A vtkAlgorithm
is the superclass for all sources, filters, and sinks
in VTK. It defines a generalized interface for executing data processing
algorithms. Pipeline connections are associated with input and output
ports that are independent of the type of data passing through the
connections.
We can connect the output port of a vtkAlgorithm
to PyVista’s rendering
pipeline when adding data to the scene through methods like
add_mesh()
.
This example will walk through using a few vtkAlgorithm
filters directly
and passing them to PyVista for dynamic visualization.
import vtk
import pyvista as pv
from pyvista import examples
Use vtkConeSource
as a source algorithm. This source will dynamically
create a cone object depending on the instances’s parameters. In this
example, we will connect a callback to set the cone source algorithm’s
resolution via vtkConeSource.SetResolution()
.
algo = pv.ConeSource()
def update_resolution(value):
"""Callback to set the resolution of the cone generator."""
res = round(value)
algo.resolution = res
Pass the vtkConeSource
(a vtkAlgorithm
subclass) directly to the
plotter and connect a slider widget to our callback that adjusts the
resolution.
p = pv.Plotter()
p.add_mesh(algo, color='red')
p.add_slider_widget(update_resolution, [5, 100], title='Resolution')
p.show()
Here is another example using vtkRegularPolygonSource
.
poly_source = vtk.vtkRegularPolygonSource()
poly_source.GeneratePolygonOff()
poly_source.SetRadius(5.0)
poly_source.SetCenter(0.0, 0.0, 0.0)
def update_n_sides(value):
"""Callback to set the number of sides."""
res = round(value)
poly_source.SetNumberOfSides(res)
p = pv.Plotter()
p.add_mesh_clip_box(poly_source, color='red')
p.add_slider_widget(update_n_sides, [3, 25], title='N Sides')
p.view_xy()
p.show()
Filter Pipeline#
We can do this with any vtkAlgorithm
subclass for dynamically generating
or filtering data. Here is an example of executing a pipeline of VTK filters
together.
# Source mesh object (static)
mesh = examples.download_bunny_coarse()
# Initialize VTK algorithm to modify dynamically
splatter = vtk.vtkGaussianSplatter()
# Pass PyVista object as input to VTK
splatter.SetInputData(mesh)
# Set parameters of splatter filter
n = 200
splatter.SetSampleDimensions(n, n, n)
splatter.SetRadius(0.02)
splatter.SetExponentFactor(-10)
splatter.SetEccentricity(2)
splatter.Update()
# Pipe splatter filter into a contour filter
contour = vtk.vtkContourFilter()
contour.SetInputConnection(splatter.GetOutputPort())
contour.SetInputArrayToProcess(0, 0, 0, 0, 'SplatterValues')
contour.SetNumberOfContours(1)
contour.SetValue(0, 0.95 * splatter.GetRadius())
# Use PyVista to plot output of contour filter
p = pv.Plotter(notebook=0)
p.add_mesh(mesh, style='wireframe')
p.add_mesh(contour, color=True)
p.add_slider_widget(splatter.SetRadius, [0.01, 0.05])
p.show()
Total running time of the script: (0 minutes 5.359 seconds)