Note
Go to the end to download the full example code
Resampling#
There are two main methods of interpolating or sampling data from a target mesh
in PyVista. pyvista.DataSetFilters.interpolate()
uses a distance weighting
kernel to interpolate point data from nearby points of the target mesh onto
the desired points.
pyvista.DataSetFilters.sample()
interpolates data using the
interpolation scheme of the enclosing cell from the target mesh.
If the target mesh is a point cloud, i.e. there is no connectivity in the cell
structure, then pyvista.DataSetFilters.interpolate()
is typically
preferred. If interpolation is desired within the cells of the target mesh, then
pyvista.DataSetFilters.sample()
is typically desired.
This example uses pyvista.DataSetFilters.sample()
.
For pyvista.DataSetFilters.interpolate()
, see Interpolating.
Resample one mesh’s point/cell arrays onto another mesh’s nodes.
This example will resample a volumetric mesh’s scalar data onto the surface of a sphere contained in that volume.
import pyvista as pv
from pyvista import examples
Simple Resample#
Query a grid’s points onto a sphere
mesh = pv.Sphere(center=(4.5, 4.5, 4.5), radius=4.5)
data_to_probe = examples.load_uniform()
Plot the two datasets
p = pv.Plotter()
p.add_mesh(mesh, color=True)
p.add_mesh(data_to_probe, opacity=0.5)
p.show()
Run the algorithm and plot the result
Complex Resample#
Take a volume of data and create a grid of lower resolution to resample on
data_to_probe = examples.download_embryo()
mesh = pv.create_grid(data_to_probe, dimensions=(75, 75, 75))
result = mesh.sample(data_to_probe)
threshold = lambda m: m.threshold(75.0, scalars='SLCImage')
cpos = [
(468.9075585873713, -152.8280322856109, 152.13046602188035),
(121.65121514580106, 140.29327609542105, 112.28137570357188),
(-0.10881224951051659, 0.006229357618166009, 0.9940428006178236),
]
dargs = dict(clim=[0, 200], cmap='rainbow')
p = pv.Plotter(shape=(1, 2))
p.add_mesh(threshold(data_to_probe), **dargs)
p.subplot(0, 1)
p.add_mesh(threshold(result), **dargs)
p.link_views()
p.view_isometric()
p.show(cpos=cpos)
Total running time of the script: (0 minutes 7.039 seconds)