Note
Go to the end to download the full example code
Interpolating#
There are two main methods of interpolating or sampling data from a target mesh
in PyVista. pyvista.DataSetFilters.interpolate()
uses a distance weighting
kernel to interpolate point data from nearby points of the target mesh onto
the desired points.
pyvista.DataSetFilters.sample()
interpolates data using the
interpolation scheme of the enclosing cell from the target mesh.
If the target mesh is a point cloud, i.e. there is no connectivity in the cell
structure, then pyvista.DataSetFilters.interpolate()
is typically
preferred. If interpolation is desired within the cells of the target mesh, then
pyvista.DataSetFilters.sample()
is typically desired.
This example uses pyvista.DataSetFilters.interpolate()
.
For pyvista.DataSetFilters.sample()
, see Resampling.
Interpolate one mesh’s point/cell arrays onto another mesh’s nodes using a Gaussian Kernel.
import pyvista as pv
from pyvista import examples
Simple Surface Interpolation#
Resample the points’ arrays onto a surface
# Download sample data
surface = examples.download_saddle_surface()
points = examples.download_sparse_points()
p = pv.Plotter()
p.add_mesh(points, scalars="val", point_size=30.0, render_points_as_spheres=True)
p.add_mesh(surface)
p.show()
Run the interpolation
interpolated = surface.interpolate(points, radius=12.0)
p = pv.Plotter()
p.add_mesh(points, scalars="val", point_size=30.0, render_points_as_spheres=True)
p.add_mesh(interpolated, scalars="val")
p.show()
Complex Interpolation#
In this example, we will in interpolate sparse points in 3D space into a volume. These data are from temperature probes in the subsurface and the goal is to create an approximate 3D model of the temperature field in the subsurface.
This approach is a great for back-of-the-hand estimations but pales in comparison to kriging
# Download the sparse data
probes = examples.download_thermal_probes()
Create the interpolation grid around the sparse data
grid = pv.ImageData()
grid.origin = (329700, 4252600, -2700)
grid.spacing = (250, 250, 50)
grid.dimensions = (60, 75, 100)
dargs = dict(cmap="coolwarm", clim=[0, 300], scalars="temperature (C)")
cpos = [
(364280.5723737897, 4285326.164400684, 14093.431895014139),
(337748.7217949739, 4261154.45054595, -637.1092549935128),
(-0.29629216102673206, -0.23840196609932093, 0.9248651025279784),
]
p = pv.Plotter()
p.add_mesh(grid.outline(), color='k')
p.add_mesh(probes, render_points_as_spheres=True, **dargs)
p.show(cpos=cpos)
Run an interpolation
interp = grid.interpolate(probes, radius=15000, sharpness=10, strategy='mask_points')
Visualize the results
vol_opac = [0, 0, 0.2, 0.2, 0.5, 0.5]
p = pv.Plotter(shape=(1, 2), window_size=[1024 * 3, 768 * 2])
p.add_volume(interp, opacity=vol_opac, **dargs)
p.add_mesh(probes, render_points_as_spheres=True, point_size=10, **dargs)
p.subplot(0, 1)
p.add_mesh(interp.contour(5), opacity=0.5, **dargs)
p.add_mesh(probes, render_points_as_spheres=True, point_size=10, **dargs)
p.link_views()
p.show(cpos=cpos)
Total running time of the script: (0 minutes 7.398 seconds)